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1. ABSTRACT 

In this project, we are given 3 tasks to complete, image transformations, histogram 

equalization, and noise reduction. For transformations, we use log and power transformations to 

expand a narrow contrast range, and experiment with the gamma values 1, 1.5 and 2.2 on each 

power transformation to see how they affect the result. We found that different combinations of 

log constants and gamma values gave varying results on image clarity and balance in the 

contrast. For histogram equalization, we create a function based on the image’s histogram 

distribution and attempt to normalize the histogram from a smaller spikelike shape to a even 

distribution. We found that transforming the data via division and manipulating the b values 

allowed us to find nearly perfect formulas to more equally distribute the histograms, leading to a 

much more balanced image. For the HSI color model, we utilized histogram equalization on the I 

element, and found that this method can help correct contrast issues in greyscale images and 

color images. Finally for noise reduction, we try both average and median filtering in 3x3, 5x5, 

and 7x7 filter sizes and compare the results from each run to determine which size best fits our 

input image. We found that in general, the larger the filter size, the greater the blur effect. We 

also found that median filtering works better to counter salt and pepper noise without gaining too 

much blur in the process. 

To view all edits, changes, and see step by step revision history, view this project on my GitHub: 

https://github.com/michaelrzg/CS4732-Projects 

2. TEST RESULTS 

2.1 Log transformation.   
 
(Only a few selected images are used here to highlight the effect. All output images can be found in 
output>log folder in the zip submission) 
 
For the log transformation, we used the formula found in the slides: 
 T(x) = y = log (1+x) * c 
in these runs we experimented with the c values: {10,20,30,50,70,90,110,120,150 } and found varying results. 
 

Image 1a: Original Image ‘univeristy.png. This is the input image. 

Image 1b: y = log(1+x) * 20. Constant =20; we can see that the image actually gets a bit darker since our 

constant is too small. 

İmage 1c: y = log(1+x) * 30. Constant =30; bumping up our c, we see slightly more details under the 

garbanzo and in shadier parts of our image. 

İmage 1d: y = log(1+x) * 50. Constant =50; at this constant, we can see a lot more detail as compared to 

our input image.  

Image 1e: y = log(1+x) * 70. Constant =70; this seems to be the best constant for our image, as it allows 

us to brighten the darker areas without completely washing out the whites. 

Image 1f: = y = log(1+x) * 90. Constant =90; this constant seems too bright, giving the image a washed 

out look. Each run above this constant lead to even more washed out results. 

https://github.com/michaelrzg/CS4732-Projects
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Figure 1: (a) Original image (input/university.png), (b) y = log(1+x) * 20(output/log/logConstant-

20.png), (c) y = log(1+x) * 30(output/log/logConstant-30.png) ,(d)  y = log(1+x) * 

50(output/log/logConstant-50.png), (e)  y = log(1+x) * 70(output/log/logConstant-70.png), (f) y = 

log(1+x) * 90(output/log/logConstant-90.png) 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 
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2.2 Power transformation. 
 
(Only a few selected images are used here to highlight the effect. All output images can be found 
in output>log folder in the zip submission) 
 
For the power transformation, we used the formula found in the slides: 
   T(x) = y = c * xy = c * x(y/gamma) 

For the power transformation, we found that values close to or above 1 darkened the image and 
values below 1 brightened the image, so we opted to continuously decrease the y value. Since our 
ry term returns a value between (0,1), we used the constant 255 to scale it to our greyscale image. 
We utilize the y values {.9,.8,.7,.6,.5,.4) for each pass. 
For gamma we divide our power by each gamma value within the range, {1,1.5,2.2}. 
 
Image 2a: We begin with the original university.png. This is the input image. 

Image 2b: y=.9 gamma = 1. We see once again that our image actually gets darker, meaning we need to 

lower our y value.  

İmage 2c: y=.8, gamma =1. This image looks pretty similar to our input, no meaningful improvement. 

İmage 2d: y=.6, gamma =1. This is where we start to see considerable improvement in our contrast. Our 

darkest points stay dark while comparatively lighter points scale up. 

Image 2e: y=.4, gamma=1. At this point, the whites begin to get washed out, and the darker points lose 

their darkness, we know that at this gamma we’ve gone too low with our y value. 

Image 2f: y=.9 gamma =1.5. Starting over and moving on to our next gamma, at .9 we see that our 

contrast is already dramatically changed for the better compared to gamma =1 at y=.9. 

Image 2g: y=.8 gamma =1.5. At the next step, we see that the contrasts improve still, once again making 

a larger jump than our previous .8 at 1 gamma. This image looks the best in my opinion. 

Image 2h: y=.6 gamma = 1.5; this step bumps the contrast up again, with the whites beginning to be 

overpowering. 

Image 2i: y=.4 gamma = 1.5; At this point the contrast is way too bright, and the blacks are completely 

washed out. 

Image 2j: y=.9 gamma = 2.2. We move on to the final gamma value 2.2, and see the same trend as 

before, with the image increasing in brightness dramatically with each step. 

Image 2k: y=.8 gamma = 2.2; at .6 the image is as bright as .4 with the 1.5 gamma, meaning the curve for 

this graph would have a higher slope.  

Image 2l: y=.6 gamma = 2.2; at this y we can clearly see the image is completely washed out, meaning 

we have gone way too far with our y value with this gamma.  

Image 2m: y=.4 gamma = 2.2; once again we are completely washed out, and the image is unusable  
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Figure 2: (a) original image (input/university.png), (b) y=.9 gamma=1 (output/power/gamma-1/yValue-0.9.png), (c) 

y=.8 gamma=1 (output/power/gamma-1/yValue-0.8.png), (d) y=.6 gamma=1 (output/power/gamma-1/yValue-0.6.png), 

(e) y=.4 gamma=1 (output/power/gamma-1/yValue-0.4.png), (f) y=.9 gamma=1.5 (output/power/gamma-1.5/yValue-

0.9.png), (g) y=.8 gamma=1.5 (output/power/gamma-1.5/yValue-0.8.png), (h) y=.6 gamma=1.5 (output/power/gamma-

1.5/yValue-0.6.png), (i) y=.4 gamma=1.5 (output/power/gamma-1.5/yValue-0.4.png), (j) y=.9 gamma=2.2 

(output/power/gamma-2.2/yValue-0.9.png), (k) y=.8 gamma=2.2 (output/power/gamma-2.2/yValue-0.8.png), (l) y=.6 

gamma=2.2 (output/power/gamma-2.2/yValue-0.6.png), (m) y=.4 gamma=2.2 (output/power/gamma-2.2/yValue-

0.4.png)  
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2.3 Histogram Equalization (greyscale) 
 
For the histogram equalization on the university.jpg image, we start by calculating the original image’s 
histogram and observing the trends. Figure 3b shows this histogram. We notice that the distribution of data 
is focused around x=5 with a range of (0,50). To scale this to (0,255), all we need to do is create a function to 
convert each pixel in the original range to the new range. This can simply be done by converting the original 
range to a scale from 0 to 1, then multiplying that result by the range we want (255-0=255). So for each pixel 
we divide its grey-level by 50, then multiply that quotient by 255 to get our resulting image. 
 
Image 3a: We begin with the original university.png. This is the input image. 

Image 3b: This is our original image’s histogram, computed via cv2’s calcHist function and displayed via 

matplotlib.pyplot’s plot function. 

Image 3c: This is our output image after equalization. We can see that the image has an increased contrast ratio. We 

also see that histogram eq preserves our darker areas better than the log or power transformations did. 

Image 3d: This is the histogram of our output image. We can see that while we still have a sharp spike, our values 

now span the entire range of the 8bit greyscale, rather than just (0,50). 

 

  

(a) 

 

         

(b) 

 

       

(c) 

 

        

 (d) 

 

Figure 3: (a) Input image (input/university.png), (b) histogram of original image’s grey-level distribution 

(output/hist/university/histogramBefore.jpeg), (c) The output university image after equalization 

(output/hist/university/uniEqualized.png), (d) histogram of original image’s grey-level distribution after 

equalization (output/hist/university/histogramAfter.jpg) 
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2.4 Histogram Equalization (RGB) 
 
For the histogram equalization for RGB on the university.jpg image, we start by calculating the original 
image’s histogram for each color channel and observing the trends. We see that all three colors have a very 
similar original histogram, so the same equalization function should work for all three. Since our graph’s 
focus range does not begin with 0 but rather 150, we need to do a little manipulation before equalization. We 
start by thresholding each pixel with some simple logic to determine if the pixel fits in our range. We simply 
check if a given pixel is below 150, and if so set that pixel to 0. If the pixel is greater than or equal to 150, we 
simply subtract the pixel’s value from 150. This effectively moves our lower point of our range from 150 to 0, 
and makes our graph look similar to the previous greyscale histogram input graph. Now all we must do is 
divide each pixel by the length of the range (about 65) and scale it by 255 to get our equalized value. I’ve 
combined these two steps into a single function that runs on each pixel. These are the results: 

 
Image 4a: We begin with the original sat_map.png. This is the input image. 

Image 4b: This histogram plots the images B values, as we can see they are not equalized. 

Image 4c: This histogram plots the images B values after equalization. We can see the values now fit the range 

better. 

Image 4d: This is the original sat_map.png image with the B values adjusted. As we can see, the colors are now 

mainly blue, but as we continue adjusting channels the image will look much more viewable.  

Image 4e: This histogram plots the images G values, as we can see they are not equalized. 

Image 4f: This histogram plots the images G values after equalization. We can see the values now fit the range 

better. 

Image 4g: This is the original sat_map.png image with the B and G values adjusted. As we can see, now that the 

green is adjusted, the red values which range from 150-215 are overpowering the image, and the image seems to be 

much more red. 

 Image 4h: This histogram plots the images R values, as we can see they are not equalized. 

Image 4i: This histogram plots the images R values after equalization. We can see the values now fit the range better. 

Image 4j: This is the original sat_map.png image with all 3 channels adjusted. We see that now the red levels are 

normalized, and the image looks as you would expect and colored satellite image to appear. 

 

 

 

 

 

 

 

 

Image 4a: original satellite image (input/sat_map.png) 
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Figure 4: (b) B channel before equalization (output/hist/satmap/B-hist-Before.jpg), (c) B channel after equalization 

(output/hist/satmap/B-hist-After.jpg), (d) satmap image after B channel correction (output/hist/satmap/B-

corrected.png) (e) G channel before equalization (output/hist/satmap/G-hist-Before.jpg), (f) G channel after 

equalization (output/hist/satmap/G-hist-after.jpg), (g) satmap image after B and G correction (output/hist/satmap/G-

corrected.png),(h) R channel before equalization (output/hist/satmap/R-hist-Before.jpg), (i) R channel after 

equalization (output/hist/satmap/R-hist-after.jpg), (j) satmap after all 3 corrected (output/hist/satmap/R-Corrected.png)  

 

 

(b) 

 

 

(c) 

 

 

(d) 

 

 

(e) 
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(j) 
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2.5 Histogram Equalization (HSI) 
 
The HSI color model, or Hue, Saturation, and Intensity model is another color model that is useful for color description and 
intensity. For this equalization, we follow the same steps as the RGB, but instead of manipulating the R, G, and B values, 
we covert the color model from RGB to HSI, and manipulate the I, or Intensity value, which in essence is simply the average 
of the R,G,B values of each pixel. We normalize the I histogram, and convert the image back to rgb. Doing this, we found 
that the color intensity and contrast issues of the original satmap image are corrected. 

 
Image 5a: We begin with the original sat_map.png. This is the input image. 

Image 5b: This histogram plots the images I values (Intensity = 1/3 (R+G+B)) and as we can see they are not 

equalized. 

Image 5c: This histogram plots the images I values after equalization, utilizing the same equalization function as 2.4. 

We can see the values now fit the range better. 

Image 5d: This is the original sat_map.png image converted back to RGB with the I values adjusted. As we can see, 

the image seems more saturated, and the blacks look more intense. We also see more contrast in the lighter vs the 

darker areas of the image. 

 

 

 (a) 

 

 

(b) 

 

 

(c) 

 

 

(d) 

Figure 5: (a) original sat-map image (input/sat_map.png), (b) original image’s histogram distribution for I value 

(output/hist/HSI/OriginalHist.png), (c) normalized histogram distribution for I value (output/hist/HSI/CorrectedHist.png), 

corrected image converted back to rgb (output/hist/HSI/correctedSatMap.png)  
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2.6 Noise Reduction (Average Filtering) 
 
The concept of average filtering is pretty simple. We take a given filter size and pass that sized matrix over 
each ‘target’ image pixel. We then average every pixel in the filter and use that average value as our target 
pixels value. This technique is one way to deal with noise reduction, but as you will see in the next page, 
median filtering performs better. We try filter sizes 3x3, 5x5, and 7x7 
 
Image 6a: We begin with the original noisy_atrium.png. This is the input image. 

Image 6b: Filter size: 3x3. At this size we don’t see too much blur effect, but we see that the salt and pepper is not 

eliminated, only slightly reduced.  

Image 6c: Filter size: 5x5. At this size we see more noticeable blur effect, and we see that the salt and pepper noise 

is not really affected much more than before, but it is more blurred into the background. 

Image 6d: Filter size: 7x7. At this size we see considerable blurring, and the noise is blended into the image. Overall, 

we see that this method did not work very well. 

 
Figure 6: (a) Original Input Image with salt and pepper noise (input/noisy_atrium.png),(b)Filter size:3x3. We see 

increase in blue with little to no noise reduction (output/reduction/average/filtersize-3.png), (c) Filter size:5x5. We see 
significant increase in blur with some noise reduction (output/reduction/average/filtersize-5.png)(d) Filter size: 7x7. We 

see significant increase in blur with some very noticeable noise reduction, but at the heavy cost of image clarity 
(output/reduction/average/filtersize-7.png) 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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2.7 Noise Reduction (Median Filtering) 
 
The concept of median filtering is not too different from average filtering but has one key difference. As 
before, we take a given filter size and pass that size filter over each ‘target’ pixel. The difference is, instead of 
averaging, we take the median (technically just another type of average) and use that for the target pixel 
instead. As you can see from the results below, this method works better than Average filtering. 
 
Image 7a: We begin with the original noisy_atrium.png. This is the input image. 

Image 7b: Filter size: 3x3. At this size we don’t see too much blur effect, but we see that the salt and pepper noise is 

essentially eliminated in this one pass besides a handful of outliers.  

Image 7c: Filter size: 5x5. At this size we see more noticeable blur effect, but the noise is completely gone. 

Image 7d: Filter size: 7x7. At this size we only see an increase in blur with no noticeable effect with noise reduction. 

At this point it is clear that we should have stopped at size 3x3 or 5x5. 

 
Figure 7: (a) Original Input Image with salt and pepper noise (input/noisy_atrium.png),(b)Filter size:3x3. We see a 
very slight increase in blur but a significant reduction in noise(output/reduction/median/filtersize-3.png), (c) Filter 

size:5x5. We see slightly more blur but basically no noise(output/reduction/median /filtersize-5.png)(d) Filter size: 7x7. 
We see noticeable blue around sharp edges in the image, but the noise is completely removed. 

(output/reduction/median/filtersize-7.png) 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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2.8 Discussion 
 
In this project, we tackled log and power transformers, histogram manipulation and equalization for both 
greyscale and color images, and noise reduction. For log transformations, we learned that varying the 
constant factor can lead to a large range of results, and finding the right factor for an image is important. In 
the power transformations, we found that the in general, lower the y power is, the brighter the image is. By 
using 255 as our scaling constant, and dividing our power by several gamma values, we found that the 
gamma plays a large role in how the contrast of the image is perceived. In the greyscale histogram 
equalization, we found that by using a formula to normalize the data into a range (0,1) and scaling it to 8-
bit greyscale (0,255), we can take an image and expand its contrast range to better see details in the 
image. We also saw that in the color equalization, by manipulating the histograms for each color then 
equalizing the colors for the satmap image we went from an almost greyscale looking washed out image, 
to a full color satellite image you would expect to see on google maps. Finally, in the noise reduction, we 
learned that in general as we increased our filter size, we see better noise reduction but a significant 
increase in blur effect each step up. We also see that the median filtering is much better at handling noise 
reduction than average filtering, with the 3x3 median filter being more effective than even the 7x7 average 
filter while minimizing how much blur we take on. Given more time, it would be nice to test how these 
filtering and histogram techniques can be used on a wider variety of images and how it can be applied to 
real world projects.  
 
 

3. CODES 

     

3.1 Code for log and power transformations (Transformations.py)   
 

# Michael Rizig 

# Project 2: Image Enhancement 

# 001008703 

# File 1: Transformation 

# 6/11/2024 

 

#nessessary imports 

from skimage import io 

import matplotlib.pyplot as plottool 

import cv2 

import math 

 

#define image path 

uniPath = 'input/university.png' 

 

#create image object with skimage 

image = io.imread(uniPath) 

 

#color correction 

image = cv2.cvtColor(image,cv2.COLOR_BGR2RGB) 

 

#define an output image as copy of input 

out = image.copy() 
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# display input image 

plottool.imshow(image) 

plottool.show() 

 

# log transformation with varying constant factors: 

constant = [20,30,50,70,90,110] 

#outer loop goes through each log constant 

for k in range(6): 

     

    # loop through each image pixel 

    for i in range(image.shape[0]): 

        for j in range(image.shape[1]): 

            #using the formula found in the slides : 

            # s = T(r) = c * Log(1 + r) where r = greylevel 

            # along with varying constants, we can see how the log transformation 

maps the narrow 

            # range found in this image to a wider range  

            f = math.log10(1+ image[i][j][1]) *constant[k] 

             

            #set pixel to this grey value 

            out[i][j] = [f,f,f] 

    #display results for each log run 

    plottool.imshow(out) 

    plottool.title(f'y = log(1+ x) * {constant[k]}') 

    plottool.show() 

     

    #save results with informative name 

    cv2.imwrite(f'output/log/logConstant-{constant[k]}.png',out) 

     

    #initilize/reset output image 

    out=image.copy() 

     

# power law transformation with varying gamma and y valyes: 

# from the slides, we know that expanding narrow ranges utilizes a smaller y 

pwer, while narrowing utilized a larger y 

# for this reason we are using smaller and smaller y values to see effect 

yValue = [.9,.8,.7,.6,.5,.4] 

#we define a few gamma levels to see difference 

gamma = [1,1.5,2.2] 

 

#outer loop goes through each gamma  

for l in range(3): 

    # k loop goes through each y value 

    for k in range(6): 
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        # i,j for each pixel in image 

        for i in range(image.shape[0]): 

            for j in range(image.shape[1]): 

                # using the formula from the lecture slides: 

                # s = c * r^y 

                # we apply this fomula with varying y values, and adjust for 

gamma by dividing each y value by a gamma level 

                # we use the c values 255 to scale the range from 0,1 given by 

the power to 0,255 

                f = math.pow(image[i][j][1]/255,(yValue[k]/gamma[l]))*255 

                 

                #set pixel grey level to function output 

                out[i][j] = [f,f,f] 

        #display this runs results 

        plottool.imshow(out) 

        plottool.title( f'y={yValue[k]}, gamma={gamma[l]}')  

        plottool.show() 

        # save results with name contianing gamma and y value used 

        cv2.imwrite(f'output/power/gamma-{gamma[l]}/yValue-{yValue[k]}.png',out) 

        #reset output image for next run 

        out=image.copy() 

 

 

  

 

3.2 Code for histogram equalization (greyscale) (Histogram-EQ.py) 
     

# Michael Rizig 

# Project 2: Image Enhancement 

# 001008703 

# File 2: Histogram Equalization 

# 6/12/2024 

 

#Import nessessary tools 

import matplotlib.pyplot as plottool 

import cv2 

from skimage import io 

 

#equalizaion function created to match the histogram for this image 

 

def equalizationFunc(pixel): 

    # to find formula, first i analized the histogram distrobution of the graph 

    # at first glance, the graph is mostly centered around the range 0,50, 

meaning the max-min gives us a range of about 50. 
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    # by dividing each pixel value by 50, we get its ratio, and by then 

multiplying that ratio by 255, we get its corrected mapped value 

    # the formula below does this 

    return 255 * (pixel/50) 

 

# image path 

mapPath = 'input/university.png' 

 

#read in image 

university = io.imread(mapPath) 

 

#color corect image from bgr 

university = cv2.cvtColor(university,cv2.COLOR_BGR2RGB) 

 

#define range and max value for histogram tool 

greyrange = [0,256] 

maxsize= [256] 

 

# utilize cv2 to draw historgram data 

hist = cv2.calcHist([university], [0], None, maxsize, greyrange) 

 

#define output image and initilize it to university image 

out= university.copy() 

 

#display original image 

plottool.imshow(out) 

plottool.title("Original image:") 

plottool.show() 

 

#display original image's histogram distrobution 

plottool.plot(hist) 

plottool.title("Original image Histogram:") 

plottool.show() 

 

#print(out.shape) 

#loop through the input image and apply the equalizaton function to each pixel's 

grey value, saving the value in the output image 

for k in range(0,university.shape[0]): 

    for p in range(0,university.shape[1]): 

        #apply the formula to each pixel 

        out[k][p] = equalizationFunc(university[k][p]) 

     

         

#calculate new histogram 

hist = cv2.calcHist([out], [0], None, maxsize, greyrange) 
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#display histrogram 

plottool.plot(hist) 

plottool.title("Equalized Histogram:") 

plottool.show() 

 

#display corrected image 

plottool.imshow(out) 

plottool.title("Equalized Image:") 

plottool.show() 

 

#save image 

cv2.imwrite('output/hist/university/uniEqualized.png',out) 

 
   

 

3.3 Code for histogram equalization (color) (Histogram-color.py)  

# Michael Rizig 

# Project 2: Image Enhancement 

# 001008703 

# File 3: Histogram Color Equalization 

# 6/12/2024 

 

# nessesary imports  

import cv2 

from skimage import io 

import matplotlib.pyplot as plottool 

 

#define the equalization funciton for this image 

# finding a function for this image was more challanging than the previous uni 

image 

# by analizing the histogram we can see that the graph centers around the range 

(165,220) and has a range with of around 65 

# we also see that there are a few outlier pixels in the extremes that would give 

us issues  

def equalizationFunc(pixel): 

    # to account for low outliers that would give weird artifacts in the output, 

I use a simple if statement 

    if pixel <150: 

        #if the pixel is below our main range, set it equal to 0 to prevent 

strange artifacting 

        pixel =0 

    else: 
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        #else we subtract the pixel from out lower bound so that we dont lose any 

colors on the high end, and that we convert the problem back to a simple range 

expansion in one directoin 

        pixel -=150 

    # by using the same concept from the previous histogram eq file, we divide 

each pixel by our range, and scale the (0,1) result to (0,255) by multiplying 

    return 255 * (pixel/65) 

 

#define our color range and max color value for the histogram 

colorrange = [0,256] 

maxsize= [256] 

#as usual we set path and use skimage to open file 

satpath = 'input/sat_map.png' 

satImage = io.imread(satpath) 

#print(satImage[0][0]) 

 

#define out output image 

 

satImage = cv2.cvtColor(satImage,cv2.COLOR_BGR2RGB) 

out = satImage.copy() 

#sshow our input image before processing 

plottool.imshow(satImage) 

plottool.show() 

 

#calculate histogram for first channel (B) 

hist = cv2.calcHist([satImage], [0], None, maxsize, colorrange) 

#plot histrogram to show our original image's B channel 

plottool.plot(hist) 

plottool.title("B distribution Before:") 

plottool.show() 

 

#histogram correction for B  

for k in range(0,satImage.shape[0]): 

    for p in range(0,satImage.shape[1]): 

        out[k][p][0] = equalizationFunc(satImage[k][p][0]) 

 

#show output image after our B channel correction 

plottool.imshow(out) 

plottool.show() 

out = cv2.cvtColor(out,cv2.COLOR_BGR2RGB) 

 

cv2.imwrite('output/hist/satmap/B-Corrected.png',out) 

#show equalized historgram for B channel after processing 

hist = cv2.calcHist([out], [0], None, maxsize, colorrange) 
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plottool.plot(hist) 

plottool.title("B distribution After EQ:") 

plottool.show() 

 

hist = cv2.calcHist([out], [1], None, maxsize, colorrange) 

plottool.plot(hist) 

plottool.title("G distribution Before EQ:") 

plottool.show() 

#histogram correction for G 

for k in range(0,satImage.shape[0]): 

    for p in range(0,satImage.shape[1]): 

        out[k][p][1] = equalizationFunc(satImage[k][p][1]) 

 

#show output image after G channel histogram equalization 

plottool.imshow(out) 

plottool.show() 

out = cv2.cvtColor(out,cv2.COLOR_BGR2RGB) 

cv2.imwrite('output/hist/satmap/G-Corrected.png',out) 

 

# show equalized histogram for g values 

hist = cv2.calcHist([out], [1], None, maxsize, colorrange) 

plottool.plot(hist) 

plottool.title("G distribution After EQ:") 

plottool.show() 

 

hist = cv2.calcHist([out], [2], None, maxsize, colorrange) 

plottool.plot(hist) 

plottool.title("R distribution Before EQ:") 

plottool.show() 

#correct R values 

for k in range(0,satImage.shape[0]): 

    for p in range(0,satImage.shape[1]): 

        out[k][p][2] = equalizationFunc(satImage[k][p][2]) 

 

#show resulting image 

plottool.imshow(out) 

plottool.show() 

out = cv2.cvtColor(out,cv2.COLOR_BGR2RGB) 

 

cv2.imwrite('output/hist/satmap/R-Corrected.png',out) 

 

#show resulting histo 

hist = cv2.calcHist([out], [2], None, maxsize, colorrange) 

plottool.plot(hist) 
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plottool.title("R distribution After EQ:") 

plottool.show() 
 

   

 

3.4 Code for histogram equalization (HSI)  
 

  # Michael Rizig 

# Project 2: Image Enhancement 

# 001008703 

# File 5: HSI Equalization 

# 6/16/2024 

 

from skimage import io 

import cv2 

import matplotlib.pyplot as plottool 

 

def equalizationFunc(pixel): 

    # to account for low outliers that would give weird artifacts in the output, 

I use a simple if statement 

    if pixel <150: 

        #if the pixel is below our main range, set it equal to 0 to prevent 

strange artifacting 

        pixel =0 

    else: 

        #else we subtract the pixel from out lower bound so that we dont lose any 

colors on the high end, and that we convert the problem back to a simple range 

expansion in one directoin 

        pixel -=150 

    # by using the same concept from the previous histogram eq file, we divide 

each pixel by our range, and scale the (0,1) result to (0,255) by multiplying 

    return 255 * (pixel/70) 

#define path 

mapPath = 'input/sat_map.png' 

# read in image using skimage.io 

satMap = io.imread(mapPath) 

 

#show original image 

plottool.imshow(satMap) 

plottool.show() 

#convert colors to hsv color scale 

satMap = cv2.cvtColor(satMap,cv2.COLOR_BGR2HSV) 

 

#calculate initial histogram for hsi [i] element 
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hist = cv2.calcHist([satMap],[2],None, [256],[0,256]) 

 

#display original histogram 

plottool.plot(hist) 

plottool.title("Satmap I histogram distribution:") 

plottool.savefig('output/hist/HSI/OriginalHist.png') 

plottool.show() 

 

#define output image 

out = satMap.copy() 

 

#histogram correction for I  

for k in range(0,satMap.shape[0]): 

    for p in range(0,satMap.shape[1]): 

        out[k][p][2] = equalizationFunc(satMap[k][p][2]) 

 

#calculate new corrected histogram 

hist = cv2.calcHist([out],[2],None, [256],[0,256]) 

 

#plot new histogram  

plottool.plot(hist) 

plottool.title("Satmap I Equalized histogram distribution:") 

plottool.savefig('output/hist/HSI/CorrectedHist.png') 

plottool.show() 

 

#show image after I histogram correction 

out = cv2.cvtColor(out,cv2.COLOR_HSV2BGR) 

cv2.imwrite('output/hist/HSI/correctedSatMap.png',out) 

plottool.imshow(out) 

plottool.show() 
 

 

3.5 Code for noise reduction (noiseReduction.py)  

# Michael Rizig 

# Project 2: Image Enhancement 

# 001008703 

# File 4: Noise Reduction via Average Filtering & Median Filtering 

# 6/12/2024 

 

# import nessesary libs 

import cv2 

from skimage import io 

import matplotlib.pyplot as plottool 

import statistics 
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# below function defines the average filter, which takes in the coordinates x, y 

of the pixel value, and the size of the desired filter. 

def averageFilter(x,y,size): 

    #init a sum varible to 0 

    s =0 

    #loop through the filter size. Since we want the filter to be centered at our 

x,y we need to modify the range of our loop 

    # by dividing the filter size by 2, then going to the left and right by the 

quotent, we are essentially centering the filter 

    # ive done this by setting the range from -(size of filter)/2 to (size of 

filter)/2 +1, then taking floor of these values 

    # for example , with filter size 3, we get range -1,2, meaning our filter 

will span: 

    # [i-1,j-1] [i-1,j] [i-1,j+1] 

    # [i,  j-1] [i,  j] [i,  j+1] 

    # [i+1,j-1] [i+1,j] [i+1,j+1] 

    for i in range(-int(size/2),int(size/2)+1): 

       for j in range(-int(size/2),int(size/2)+1): 

        #for each value we add its weight to the sum (all values share the same 

weight in this implementation) 

        s+= padded[x+i][y+j][0] / size**2 

    #finally return the average 

    return s  

 

#below function defines the medianfilter, which take the same range of value 

def medianFilter(x,y,size): 

    # instead of a sum, we define a set for all values 

    s =[] 

     

    #loop through the filter size. Since we want the filter to be centered at our 

x,y we need to modify the range of our loop 

    # by dividing the filter size by 2, then going to the left and right by the 

quotent, we are essentially centering the filter 

    # ive done this by setting the range from -(size of filter)/2 to (size of 

filter)/2 +1, then taking floor of these values 

    # for example , with filter size 3, we get range -1,2, meaning our filter 

will span: 

    # [i-1,j-1] [i-1,j] [i-1,j+1] 

    # [i,  j-1] [i,  j] [i,  j+1] 

    # [i+1,j-1] [i+1,j] [i+1,j+1] 

    for i in range(-int(size/2),int(size/2)+1): 

       for j in range(-int(size/2),int(size/2)+1): 

        #instead of adding like we did before, we are simply appending each value 

to the list 

        s.append( padded[x+i][y+j][0]) 
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    #sort the values (the easy way) 

    s.sort() 

    #and finally return the median of the values 

    return statistics.median(s) 

 

#define filter sizes  

filter_size = [3,5,7] 

# define image path 

noisyAtriumPath = 'input/noisy_atrium.png' 

# import image using skimage 

noisyAtrium = io.imread(noisyAtriumPath) 

#adjust colors from bgr to rgb 

noisyAtrium = cv2.cvtColor(noisyAtrium,cv2.COLOR_BGR2RGB) 

 

#print(noisyAtrium.shape) 

 

#display original image 

plottool.imshow(noisyAtrium) 

plottool.show() 

 

#this loop applies the average noise filter 

for i in filter_size: 

     

    #start by padding the image, which is one simple way described in the 

lectures to avoid out of bounds errors 

    #padding by the floor of half the filter size: since center of filter is 

always an image pixel, we only need 1/2 of filter size out each direction 

    padding = int(i/2) 

    # use cv2 built in tool to add padding 

    padded = 

cv2.copyMakeBorder(noisyAtrium,padding,padding,padding,padding,cv2.BORDER_CONSTAN

T,value=[0,0,0]) 

    # finally, initialize out output image for this filter 

    out = padded.copy() 

     

    #this loop goes through each pixle and applies the filter 

    for k in range (padding,noisyAtrium.shape[0]-padding): 

        for j in range(padding,noisyAtrium.shape[1]-padding): 

            out[k][j] = averageFilter(k,j,i)            

     

    #save the image with the appropriate informative name 

    cv2.imwrite(f'output/reduction/average/filtersize-{i}.png',out) 

     

    #finally show each image and how the filter smoothing effected it 
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    plottool.imshow(out) 

    plottool.show()         

 

# this loop works essentially the same way but with the median filtering 

for i in filter_size: 

     

    #create padding for image 

    padding = int(i/2) 

    padded = 

cv2.copyMakeBorder(noisyAtrium,padding,padding,padding,padding,cv2.BORDER_CONSTAN

T,value=[0,0,0]) 

    out = padded.copy()  

     

    #apply filter 

    for k in range (padding,noisyAtrium.shape[0]-padding): 

        for j in range(padding,noisyAtrium.shape[1]-padding): 

            out[k][j] = medianFilter(k,j,i) 

    #save and display         

    cv2.imwrite(f'output/reduction/median/filtersize-{i}.png',out) 

    plottool.imshow(out) 

    plottool.show()   
 

 


