

CS 4732
MACHINE VISION

PROJECT 2

IMAGE ENHANCEMENT

INSTRUCTOR

 Dr. Mahmut KARAKAYA

Michael Rizig

001008703

2

1. ABSTRACT

In this project, we are given 3 tasks to complete, image transformations, histogram

equalization, and noise reduction. For transformations, we use log and power transformations to

expand a narrow contrast range, and experiment with the gamma values 1, 1.5 and 2.2 on each

power transformation to see how they affect the result. We found that different combinations of

log constants and gamma values gave varying results on image clarity and balance in the

contrast. For histogram equalization, we create a function based on the image’s histogram

distribution and attempt to normalize the histogram from a smaller spikelike shape to a even

distribution. We found that transforming the data via division and manipulating the b values

allowed us to find nearly perfect formulas to more equally distribute the histograms, leading to a

much more balanced image. For the HSI color model, we utilized histogram equalization on the I

element, and found that this method can help correct contrast issues in greyscale images and

color images. Finally for noise reduction, we try both average and median filtering in 3x3, 5x5,

and 7x7 filter sizes and compare the results from each run to determine which size best fits our

input image. We found that in general, the larger the filter size, the greater the blur effect. We

also found that median filtering works better to counter salt and pepper noise without gaining too

much blur in the process.

To view all edits, changes, and see step by step revision history, view this project on my GitHub:

https://github.com/michaelrzg/CS4732-Projects

2. TEST RESULTS

2.1 Log transformation.

(Only a few selected images are used here to highlight the effect. All output images can be found in
output>log folder in the zip submission)

For the log transformation, we used the formula found in the slides:
 T(x) = y = log (1+x) * c
in these runs we experimented with the c values: {10,20,30,50,70,90,110,120,150 } and found varying results.

Image 1a: Original Image ‘univeristy.png. This is the input image.

Image 1b: y = log(1+x) * 20. Constant =20; we can see that the image actually gets a bit darker since our

constant is too small.

İmage 1c: y = log(1+x) * 30. Constant =30; bumping up our c, we see slightly more details under the

garbanzo and in shadier parts of our image.

İmage 1d: y = log(1+x) * 50. Constant =50; at this constant, we can see a lot more detail as compared to

our input image.

Image 1e: y = log(1+x) * 70. Constant =70; this seems to be the best constant for our image, as it allows

us to brighten the darker areas without completely washing out the whites.

Image 1f: = y = log(1+x) * 90. Constant =90; this constant seems too bright, giving the image a washed

out look. Each run above this constant lead to even more washed out results.

https://github.com/michaelrzg/CS4732-Projects

3

Figure 1: (a) Original image (input/university.png), (b) y = log(1+x) * 20(output/log/logConstant-

20.png), (c) y = log(1+x) * 30(output/log/logConstant-30.png) ,(d) y = log(1+x) *

50(output/log/logConstant-50.png), (e) y = log(1+x) * 70(output/log/logConstant-70.png), (f) y =

log(1+x) * 90(output/log/logConstant-90.png)

(a)

(b)

(c)

(d)

(e)

(f)

4

2.2 Power transformation.

(Only a few selected images are used here to highlight the effect. All output images can be found
in output>log folder in the zip submission)

For the power transformation, we used the formula found in the slides:
 T(x) = y = c * xy = c * x(y/gamma)

For the power transformation, we found that values close to or above 1 darkened the image and
values below 1 brightened the image, so we opted to continuously decrease the y value. Since our
ry term returns a value between (0,1), we used the constant 255 to scale it to our greyscale image.
We utilize the y values {.9,.8,.7,.6,.5,.4) for each pass.
For gamma we divide our power by each gamma value within the range, {1,1.5,2.2}.

Image 2a: We begin with the original university.png. This is the input image.

Image 2b: y=.9 gamma = 1. We see once again that our image actually gets darker, meaning we need to

lower our y value.

İmage 2c: y=.8, gamma =1. This image looks pretty similar to our input, no meaningful improvement.

İmage 2d: y=.6, gamma =1. This is where we start to see considerable improvement in our contrast. Our

darkest points stay dark while comparatively lighter points scale up.

Image 2e: y=.4, gamma=1. At this point, the whites begin to get washed out, and the darker points lose

their darkness, we know that at this gamma we’ve gone too low with our y value.

Image 2f: y=.9 gamma =1.5. Starting over and moving on to our next gamma, at .9 we see that our

contrast is already dramatically changed for the better compared to gamma =1 at y=.9.

Image 2g: y=.8 gamma =1.5. At the next step, we see that the contrasts improve still, once again making

a larger jump than our previous .8 at 1 gamma. This image looks the best in my opinion.

Image 2h: y=.6 gamma = 1.5; this step bumps the contrast up again, with the whites beginning to be

overpowering.

Image 2i: y=.4 gamma = 1.5; At this point the contrast is way too bright, and the blacks are completely

washed out.

Image 2j: y=.9 gamma = 2.2. We move on to the final gamma value 2.2, and see the same trend as

before, with the image increasing in brightness dramatically with each step.

Image 2k: y=.8 gamma = 2.2; at .6 the image is as bright as .4 with the 1.5 gamma, meaning the curve for

this graph would have a higher slope.

Image 2l: y=.6 gamma = 2.2; at this y we can clearly see the image is completely washed out, meaning

we have gone way too far with our y value with this gamma.

Image 2m: y=.4 gamma = 2.2; once again we are completely washed out, and the image is unusable

5

Figure 2: (a) original image (input/university.png), (b) y=.9 gamma=1 (output/power/gamma-1/yValue-0.9.png), (c)

y=.8 gamma=1 (output/power/gamma-1/yValue-0.8.png), (d) y=.6 gamma=1 (output/power/gamma-1/yValue-0.6.png),

(e) y=.4 gamma=1 (output/power/gamma-1/yValue-0.4.png), (f) y=.9 gamma=1.5 (output/power/gamma-1.5/yValue-

0.9.png), (g) y=.8 gamma=1.5 (output/power/gamma-1.5/yValue-0.8.png), (h) y=.6 gamma=1.5 (output/power/gamma-

1.5/yValue-0.6.png), (i) y=.4 gamma=1.5 (output/power/gamma-1.5/yValue-0.4.png), (j) y=.9 gamma=2.2

(output/power/gamma-2.2/yValue-0.9.png), (k) y=.8 gamma=2.2 (output/power/gamma-2.2/yValue-0.8.png), (l) y=.6

gamma=2.2 (output/power/gamma-2.2/yValue-0.6.png), (m) y=.4 gamma=2.2 (output/power/gamma-2.2/yValue-

0.4.png)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(i)

(j)

(k)

(l)

(m)

-

6

2.3 Histogram Equalization (greyscale)

For the histogram equalization on the university.jpg image, we start by calculating the original image’s
histogram and observing the trends. Figure 3b shows this histogram. We notice that the distribution of data
is focused around x=5 with a range of (0,50). To scale this to (0,255), all we need to do is create a function to
convert each pixel in the original range to the new range. This can simply be done by converting the original
range to a scale from 0 to 1, then multiplying that result by the range we want (255-0=255). So for each pixel
we divide its grey-level by 50, then multiply that quotient by 255 to get our resulting image.

Image 3a: We begin with the original university.png. This is the input image.

Image 3b: This is our original image’s histogram, computed via cv2’s calcHist function and displayed via

matplotlib.pyplot’s plot function.

Image 3c: This is our output image after equalization. We can see that the image has an increased contrast ratio. We

also see that histogram eq preserves our darker areas better than the log or power transformations did.

Image 3d: This is the histogram of our output image. We can see that while we still have a sharp spike, our values

now span the entire range of the 8bit greyscale, rather than just (0,50).

(a)

(b)

(c)

 (d)

Figure 3: (a) Input image (input/university.png), (b) histogram of original image’s grey-level distribution

(output/hist/university/histogramBefore.jpeg), (c) The output university image after equalization

(output/hist/university/uniEqualized.png), (d) histogram of original image’s grey-level distribution after

equalization (output/hist/university/histogramAfter.jpg)

7

2.4 Histogram Equalization (RGB)

For the histogram equalization for RGB on the university.jpg image, we start by calculating the original
image’s histogram for each color channel and observing the trends. We see that all three colors have a very
similar original histogram, so the same equalization function should work for all three. Since our graph’s
focus range does not begin with 0 but rather 150, we need to do a little manipulation before equalization. We
start by thresholding each pixel with some simple logic to determine if the pixel fits in our range. We simply
check if a given pixel is below 150, and if so set that pixel to 0. If the pixel is greater than or equal to 150, we
simply subtract the pixel’s value from 150. This effectively moves our lower point of our range from 150 to 0,
and makes our graph look similar to the previous greyscale histogram input graph. Now all we must do is
divide each pixel by the length of the range (about 65) and scale it by 255 to get our equalized value. I’ve
combined these two steps into a single function that runs on each pixel. These are the results:

Image 4a: We begin with the original sat_map.png. This is the input image.

Image 4b: This histogram plots the images B values, as we can see they are not equalized.

Image 4c: This histogram plots the images B values after equalization. We can see the values now fit the range

better.

Image 4d: This is the original sat_map.png image with the B values adjusted. As we can see, the colors are now

mainly blue, but as we continue adjusting channels the image will look much more viewable.

Image 4e: This histogram plots the images G values, as we can see they are not equalized.

Image 4f: This histogram plots the images G values after equalization. We can see the values now fit the range

better.

Image 4g: This is the original sat_map.png image with the B and G values adjusted. As we can see, now that the

green is adjusted, the red values which range from 150-215 are overpowering the image, and the image seems to be

much more red.

 Image 4h: This histogram plots the images R values, as we can see they are not equalized.

Image 4i: This histogram plots the images R values after equalization. We can see the values now fit the range better.

Image 4j: This is the original sat_map.png image with all 3 channels adjusted. We see that now the red levels are

normalized, and the image looks as you would expect and colored satellite image to appear.

Image 4a: original satellite image (input/sat_map.png)

8

Figure 4: (b) B channel before equalization (output/hist/satmap/B-hist-Before.jpg), (c) B channel after equalization

(output/hist/satmap/B-hist-After.jpg), (d) satmap image after B channel correction (output/hist/satmap/B-

corrected.png) (e) G channel before equalization (output/hist/satmap/G-hist-Before.jpg), (f) G channel after

equalization (output/hist/satmap/G-hist-after.jpg), (g) satmap image after B and G correction (output/hist/satmap/G-

corrected.png),(h) R channel before equalization (output/hist/satmap/R-hist-Before.jpg), (i) R channel after

equalization (output/hist/satmap/R-hist-after.jpg), (j) satmap after all 3 corrected (output/hist/satmap/R-Corrected.png)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

9

2.5 Histogram Equalization (HSI)

The HSI color model, or Hue, Saturation, and Intensity model is another color model that is useful for color description and
intensity. For this equalization, we follow the same steps as the RGB, but instead of manipulating the R, G, and B values,
we covert the color model from RGB to HSI, and manipulate the I, or Intensity value, which in essence is simply the average
of the R,G,B values of each pixel. We normalize the I histogram, and convert the image back to rgb. Doing this, we found
that the color intensity and contrast issues of the original satmap image are corrected.

Image 5a: We begin with the original sat_map.png. This is the input image.

Image 5b: This histogram plots the images I values (Intensity = 1/3 (R+G+B)) and as we can see they are not

equalized.

Image 5c: This histogram plots the images I values after equalization, utilizing the same equalization function as 2.4.

We can see the values now fit the range better.

Image 5d: This is the original sat_map.png image converted back to RGB with the I values adjusted. As we can see,

the image seems more saturated, and the blacks look more intense. We also see more contrast in the lighter vs the

darker areas of the image.

 (a)

(b)

(c)

(d)

Figure 5: (a) original sat-map image (input/sat_map.png), (b) original image’s histogram distribution for I value

(output/hist/HSI/OriginalHist.png), (c) normalized histogram distribution for I value (output/hist/HSI/CorrectedHist.png),

corrected image converted back to rgb (output/hist/HSI/correctedSatMap.png)

10

2.6 Noise Reduction (Average Filtering)

The concept of average filtering is pretty simple. We take a given filter size and pass that sized matrix over
each ‘target’ image pixel. We then average every pixel in the filter and use that average value as our target
pixels value. This technique is one way to deal with noise reduction, but as you will see in the next page,
median filtering performs better. We try filter sizes 3x3, 5x5, and 7x7

Image 6a: We begin with the original noisy_atrium.png. This is the input image.

Image 6b: Filter size: 3x3. At this size we don’t see too much blur effect, but we see that the salt and pepper is not

eliminated, only slightly reduced.

Image 6c: Filter size: 5x5. At this size we see more noticeable blur effect, and we see that the salt and pepper noise

is not really affected much more than before, but it is more blurred into the background.

Image 6d: Filter size: 7x7. At this size we see considerable blurring, and the noise is blended into the image. Overall,

we see that this method did not work very well.

Figure 6: (a) Original Input Image with salt and pepper noise (input/noisy_atrium.png),(b)Filter size:3x3. We see

increase in blue with little to no noise reduction (output/reduction/average/filtersize-3.png), (c) Filter size:5x5. We see
significant increase in blur with some noise reduction (output/reduction/average/filtersize-5.png)(d) Filter size: 7x7. We

see significant increase in blur with some very noticeable noise reduction, but at the heavy cost of image clarity
(output/reduction/average/filtersize-7.png)

(a)

(b)

(c)

(d)

11

2.7 Noise Reduction (Median Filtering)

The concept of median filtering is not too different from average filtering but has one key difference. As
before, we take a given filter size and pass that size filter over each ‘target’ pixel. The difference is, instead of
averaging, we take the median (technically just another type of average) and use that for the target pixel
instead. As you can see from the results below, this method works better than Average filtering.

Image 7a: We begin with the original noisy_atrium.png. This is the input image.

Image 7b: Filter size: 3x3. At this size we don’t see too much blur effect, but we see that the salt and pepper noise is

essentially eliminated in this one pass besides a handful of outliers.

Image 7c: Filter size: 5x5. At this size we see more noticeable blur effect, but the noise is completely gone.

Image 7d: Filter size: 7x7. At this size we only see an increase in blur with no noticeable effect with noise reduction.

At this point it is clear that we should have stopped at size 3x3 or 5x5.

Figure 7: (a) Original Input Image with salt and pepper noise (input/noisy_atrium.png),(b)Filter size:3x3. We see a
very slight increase in blur but a significant reduction in noise(output/reduction/median/filtersize-3.png), (c) Filter

size:5x5. We see slightly more blur but basically no noise(output/reduction/median /filtersize-5.png)(d) Filter size: 7x7.
We see noticeable blue around sharp edges in the image, but the noise is completely removed.

(output/reduction/median/filtersize-7.png)

(a)

(b)

(c)

(d)

12

2.8 Discussion

In this project, we tackled log and power transformers, histogram manipulation and equalization for both
greyscale and color images, and noise reduction. For log transformations, we learned that varying the
constant factor can lead to a large range of results, and finding the right factor for an image is important. In
the power transformations, we found that the in general, lower the y power is, the brighter the image is. By
using 255 as our scaling constant, and dividing our power by several gamma values, we found that the
gamma plays a large role in how the contrast of the image is perceived. In the greyscale histogram
equalization, we found that by using a formula to normalize the data into a range (0,1) and scaling it to 8-
bit greyscale (0,255), we can take an image and expand its contrast range to better see details in the
image. We also saw that in the color equalization, by manipulating the histograms for each color then
equalizing the colors for the satmap image we went from an almost greyscale looking washed out image,
to a full color satellite image you would expect to see on google maps. Finally, in the noise reduction, we
learned that in general as we increased our filter size, we see better noise reduction but a significant
increase in blur effect each step up. We also see that the median filtering is much better at handling noise
reduction than average filtering, with the 3x3 median filter being more effective than even the 7x7 average
filter while minimizing how much blur we take on. Given more time, it would be nice to test how these
filtering and histogram techniques can be used on a wider variety of images and how it can be applied to
real world projects.

3. CODES

3.1 Code for log and power transformations (Transformations.py)

Michael Rizig

Project 2: Image Enhancement

001008703

File 1: Transformation

6/11/2024

#nessessary imports

from skimage import io

import matplotlib.pyplot as plottool

import cv2

import math

#define image path

uniPath = 'input/university.png'

#create image object with skimage

image = io.imread(uniPath)

#color correction

image = cv2.cvtColor(image,cv2.COLOR_BGR2RGB)

#define an output image as copy of input

out = image.copy()

13

display input image

plottool.imshow(image)

plottool.show()

log transformation with varying constant factors:

constant = [20,30,50,70,90,110]

#outer loop goes through each log constant

for k in range(6):

 # loop through each image pixel

 for i in range(image.shape[0]):

 for j in range(image.shape[1]):

 #using the formula found in the slides :

 # s = T(r) = c * Log(1 + r) where r = greylevel

 # along with varying constants, we can see how the log transformation

maps the narrow

 # range found in this image to a wider range

 f = math.log10(1+ image[i][j][1]) *constant[k]

 #set pixel to this grey value

 out[i][j] = [f,f,f]

 #display results for each log run

 plottool.imshow(out)

 plottool.title(f'y = log(1+ x) * {constant[k]}')

 plottool.show()

 #save results with informative name

 cv2.imwrite(f'output/log/logConstant-{constant[k]}.png',out)

 #initilize/reset output image

 out=image.copy()

power law transformation with varying gamma and y valyes:

from the slides, we know that expanding narrow ranges utilizes a smaller y

pwer, while narrowing utilized a larger y

for this reason we are using smaller and smaller y values to see effect

yValue = [.9,.8,.7,.6,.5,.4]

#we define a few gamma levels to see difference

gamma = [1,1.5,2.2]

#outer loop goes through each gamma

for l in range(3):

 # k loop goes through each y value

 for k in range(6):

14

 # i,j for each pixel in image

 for i in range(image.shape[0]):

 for j in range(image.shape[1]):

 # using the formula from the lecture slides:

 # s = c * r^y

 # we apply this fomula with varying y values, and adjust for

gamma by dividing each y value by a gamma level

 # we use the c values 255 to scale the range from 0,1 given by

the power to 0,255

 f = math.pow(image[i][j][1]/255,(yValue[k]/gamma[l]))*255

 #set pixel grey level to function output

 out[i][j] = [f,f,f]

 #display this runs results

 plottool.imshow(out)

 plottool.title(f'y={yValue[k]}, gamma={gamma[l]}')

 plottool.show()

 # save results with name contianing gamma and y value used

 cv2.imwrite(f'output/power/gamma-{gamma[l]}/yValue-{yValue[k]}.png',out)

 #reset output image for next run

 out=image.copy()

3.2 Code for histogram equalization (greyscale) (Histogram-EQ.py)

Michael Rizig

Project 2: Image Enhancement

001008703

File 2: Histogram Equalization

6/12/2024

#Import nessessary tools

import matplotlib.pyplot as plottool

import cv2

from skimage import io

#equalizaion function created to match the histogram for this image

def equalizationFunc(pixel):

 # to find formula, first i analized the histogram distrobution of the graph

 # at first glance, the graph is mostly centered around the range 0,50,

meaning the max-min gives us a range of about 50.

15

 # by dividing each pixel value by 50, we get its ratio, and by then

multiplying that ratio by 255, we get its corrected mapped value

 # the formula below does this

 return 255 * (pixel/50)

image path

mapPath = 'input/university.png'

#read in image

university = io.imread(mapPath)

#color corect image from bgr

university = cv2.cvtColor(university,cv2.COLOR_BGR2RGB)

#define range and max value for histogram tool

greyrange = [0,256]

maxsize= [256]

utilize cv2 to draw historgram data

hist = cv2.calcHist([university], [0], None, maxsize, greyrange)

#define output image and initilize it to university image

out= university.copy()

#display original image

plottool.imshow(out)

plottool.title("Original image:")

plottool.show()

#display original image's histogram distrobution

plottool.plot(hist)

plottool.title("Original image Histogram:")

plottool.show()

#print(out.shape)

#loop through the input image and apply the equalizaton function to each pixel's

grey value, saving the value in the output image

for k in range(0,university.shape[0]):

 for p in range(0,university.shape[1]):

 #apply the formula to each pixel

 out[k][p] = equalizationFunc(university[k][p])

#calculate new histogram

hist = cv2.calcHist([out], [0], None, maxsize, greyrange)

16

#display histrogram

plottool.plot(hist)

plottool.title("Equalized Histogram:")

plottool.show()

#display corrected image

plottool.imshow(out)

plottool.title("Equalized Image:")

plottool.show()

#save image

cv2.imwrite('output/hist/university/uniEqualized.png',out)

3.3 Code for histogram equalization (color) (Histogram-color.py)

Michael Rizig

Project 2: Image Enhancement

001008703

File 3: Histogram Color Equalization

6/12/2024

nessesary imports

import cv2

from skimage import io

import matplotlib.pyplot as plottool

#define the equalization funciton for this image

finding a function for this image was more challanging than the previous uni

image

by analizing the histogram we can see that the graph centers around the range

(165,220) and has a range with of around 65

we also see that there are a few outlier pixels in the extremes that would give

us issues

def equalizationFunc(pixel):

 # to account for low outliers that would give weird artifacts in the output,

I use a simple if statement

 if pixel <150:

 #if the pixel is below our main range, set it equal to 0 to prevent

strange artifacting

 pixel =0

 else:

17

 #else we subtract the pixel from out lower bound so that we dont lose any

colors on the high end, and that we convert the problem back to a simple range

expansion in one directoin

 pixel -=150

 # by using the same concept from the previous histogram eq file, we divide

each pixel by our range, and scale the (0,1) result to (0,255) by multiplying

 return 255 * (pixel/65)

#define our color range and max color value for the histogram

colorrange = [0,256]

maxsize= [256]

#as usual we set path and use skimage to open file

satpath = 'input/sat_map.png'

satImage = io.imread(satpath)

#print(satImage[0][0])

#define out output image

satImage = cv2.cvtColor(satImage,cv2.COLOR_BGR2RGB)

out = satImage.copy()

#sshow our input image before processing

plottool.imshow(satImage)

plottool.show()

#calculate histogram for first channel (B)

hist = cv2.calcHist([satImage], [0], None, maxsize, colorrange)

#plot histrogram to show our original image's B channel

plottool.plot(hist)

plottool.title("B distribution Before:")

plottool.show()

#histogram correction for B

for k in range(0,satImage.shape[0]):

 for p in range(0,satImage.shape[1]):

 out[k][p][0] = equalizationFunc(satImage[k][p][0])

#show output image after our B channel correction

plottool.imshow(out)

plottool.show()

out = cv2.cvtColor(out,cv2.COLOR_BGR2RGB)

cv2.imwrite('output/hist/satmap/B-Corrected.png',out)

#show equalized historgram for B channel after processing

hist = cv2.calcHist([out], [0], None, maxsize, colorrange)

18

plottool.plot(hist)

plottool.title("B distribution After EQ:")

plottool.show()

hist = cv2.calcHist([out], [1], None, maxsize, colorrange)

plottool.plot(hist)

plottool.title("G distribution Before EQ:")

plottool.show()

#histogram correction for G

for k in range(0,satImage.shape[0]):

 for p in range(0,satImage.shape[1]):

 out[k][p][1] = equalizationFunc(satImage[k][p][1])

#show output image after G channel histogram equalization

plottool.imshow(out)

plottool.show()

out = cv2.cvtColor(out,cv2.COLOR_BGR2RGB)

cv2.imwrite('output/hist/satmap/G-Corrected.png',out)

show equalized histogram for g values

hist = cv2.calcHist([out], [1], None, maxsize, colorrange)

plottool.plot(hist)

plottool.title("G distribution After EQ:")

plottool.show()

hist = cv2.calcHist([out], [2], None, maxsize, colorrange)

plottool.plot(hist)

plottool.title("R distribution Before EQ:")

plottool.show()

#correct R values

for k in range(0,satImage.shape[0]):

 for p in range(0,satImage.shape[1]):

 out[k][p][2] = equalizationFunc(satImage[k][p][2])

#show resulting image

plottool.imshow(out)

plottool.show()

out = cv2.cvtColor(out,cv2.COLOR_BGR2RGB)

cv2.imwrite('output/hist/satmap/R-Corrected.png',out)

#show resulting histo

hist = cv2.calcHist([out], [2], None, maxsize, colorrange)

plottool.plot(hist)

19

plottool.title("R distribution After EQ:")

plottool.show()

3.4 Code for histogram equalization (HSI)

 # Michael Rizig

Project 2: Image Enhancement

001008703

File 5: HSI Equalization

6/16/2024

from skimage import io

import cv2

import matplotlib.pyplot as plottool

def equalizationFunc(pixel):

 # to account for low outliers that would give weird artifacts in the output,

I use a simple if statement

 if pixel <150:

 #if the pixel is below our main range, set it equal to 0 to prevent

strange artifacting

 pixel =0

 else:

 #else we subtract the pixel from out lower bound so that we dont lose any

colors on the high end, and that we convert the problem back to a simple range

expansion in one directoin

 pixel -=150

 # by using the same concept from the previous histogram eq file, we divide

each pixel by our range, and scale the (0,1) result to (0,255) by multiplying

 return 255 * (pixel/70)

#define path

mapPath = 'input/sat_map.png'

read in image using skimage.io

satMap = io.imread(mapPath)

#show original image

plottool.imshow(satMap)

plottool.show()

#convert colors to hsv color scale

satMap = cv2.cvtColor(satMap,cv2.COLOR_BGR2HSV)

#calculate initial histogram for hsi [i] element

20

hist = cv2.calcHist([satMap],[2],None, [256],[0,256])

#display original histogram

plottool.plot(hist)

plottool.title("Satmap I histogram distribution:")

plottool.savefig('output/hist/HSI/OriginalHist.png')

plottool.show()

#define output image

out = satMap.copy()

#histogram correction for I

for k in range(0,satMap.shape[0]):

 for p in range(0,satMap.shape[1]):

 out[k][p][2] = equalizationFunc(satMap[k][p][2])

#calculate new corrected histogram

hist = cv2.calcHist([out],[2],None, [256],[0,256])

#plot new histogram

plottool.plot(hist)

plottool.title("Satmap I Equalized histogram distribution:")

plottool.savefig('output/hist/HSI/CorrectedHist.png')

plottool.show()

#show image after I histogram correction

out = cv2.cvtColor(out,cv2.COLOR_HSV2BGR)

cv2.imwrite('output/hist/HSI/correctedSatMap.png',out)

plottool.imshow(out)

plottool.show()

3.5 Code for noise reduction (noiseReduction.py)

Michael Rizig

Project 2: Image Enhancement

001008703

File 4: Noise Reduction via Average Filtering & Median Filtering

6/12/2024

import nessesary libs

import cv2

from skimage import io

import matplotlib.pyplot as plottool

import statistics

21

below function defines the average filter, which takes in the coordinates x, y

of the pixel value, and the size of the desired filter.

def averageFilter(x,y,size):

 #init a sum varible to 0

 s =0

 #loop through the filter size. Since we want the filter to be centered at our

x,y we need to modify the range of our loop

 # by dividing the filter size by 2, then going to the left and right by the

quotent, we are essentially centering the filter

 # ive done this by setting the range from -(size of filter)/2 to (size of

filter)/2 +1, then taking floor of these values

 # for example , with filter size 3, we get range -1,2, meaning our filter

will span:

 # [i-1,j-1] [i-1,j] [i-1,j+1]

 # [i, j-1] [i, j] [i, j+1]

 # [i+1,j-1] [i+1,j] [i+1,j+1]

 for i in range(-int(size/2),int(size/2)+1):

 for j in range(-int(size/2),int(size/2)+1):

 #for each value we add its weight to the sum (all values share the same

weight in this implementation)

 s+= padded[x+i][y+j][0] / size**2

 #finally return the average

 return s

#below function defines the medianfilter, which take the same range of value

def medianFilter(x,y,size):

 # instead of a sum, we define a set for all values

 s =[]

 #loop through the filter size. Since we want the filter to be centered at our

x,y we need to modify the range of our loop

 # by dividing the filter size by 2, then going to the left and right by the

quotent, we are essentially centering the filter

 # ive done this by setting the range from -(size of filter)/2 to (size of

filter)/2 +1, then taking floor of these values

 # for example , with filter size 3, we get range -1,2, meaning our filter

will span:

 # [i-1,j-1] [i-1,j] [i-1,j+1]

 # [i, j-1] [i, j] [i, j+1]

 # [i+1,j-1] [i+1,j] [i+1,j+1]

 for i in range(-int(size/2),int(size/2)+1):

 for j in range(-int(size/2),int(size/2)+1):

 #instead of adding like we did before, we are simply appending each value

to the list

 s.append(padded[x+i][y+j][0])

22

 #sort the values (the easy way)

 s.sort()

 #and finally return the median of the values

 return statistics.median(s)

#define filter sizes

filter_size = [3,5,7]

define image path

noisyAtriumPath = 'input/noisy_atrium.png'

import image using skimage

noisyAtrium = io.imread(noisyAtriumPath)

#adjust colors from bgr to rgb

noisyAtrium = cv2.cvtColor(noisyAtrium,cv2.COLOR_BGR2RGB)

#print(noisyAtrium.shape)

#display original image

plottool.imshow(noisyAtrium)

plottool.show()

#this loop applies the average noise filter

for i in filter_size:

 #start by padding the image, which is one simple way described in the

lectures to avoid out of bounds errors

 #padding by the floor of half the filter size: since center of filter is

always an image pixel, we only need 1/2 of filter size out each direction

 padding = int(i/2)

 # use cv2 built in tool to add padding

 padded =

cv2.copyMakeBorder(noisyAtrium,padding,padding,padding,padding,cv2.BORDER_CONSTAN

T,value=[0,0,0])

 # finally, initialize out output image for this filter

 out = padded.copy()

 #this loop goes through each pixle and applies the filter

 for k in range (padding,noisyAtrium.shape[0]-padding):

 for j in range(padding,noisyAtrium.shape[1]-padding):

 out[k][j] = averageFilter(k,j,i)

 #save the image with the appropriate informative name

 cv2.imwrite(f'output/reduction/average/filtersize-{i}.png',out)

 #finally show each image and how the filter smoothing effected it

23

 plottool.imshow(out)

 plottool.show()

this loop works essentially the same way but with the median filtering

for i in filter_size:

 #create padding for image

 padding = int(i/2)

 padded =

cv2.copyMakeBorder(noisyAtrium,padding,padding,padding,padding,cv2.BORDER_CONSTAN

T,value=[0,0,0])

 out = padded.copy()

 #apply filter

 for k in range (padding,noisyAtrium.shape[0]-padding):

 for j in range(padding,noisyAtrium.shape[1]-padding):

 out[k][j] = medianFilter(k,j,i)

 #save and display

 cv2.imwrite(f'output/reduction/median/filtersize-{i}.png',out)

 plottool.imshow(out)

 plottool.show()

